UNIT -V
NETWORK SYNTHESIS

Topics: Identification of network synthesis-, Brune’s positive and real function (PRF),
properties of PRF, testing of driving point functions, even and odd function, one terminal pair
network driving point synthesis with LC elements, RC elements, RL elements Foster and Cauer
forms.

INTRODUCTION:

For any network, three things are associated with it. These are network elements, input
i.e. excitation to the network and output i.e. response from the network.

In the network analysis, the network elements are known and excitation is also known.
Using number of methods, the networks are studied and the response is obtained. Such a
response is unique for a given network and known excitation. So obtaining a response for a
known network and known excitation is called network analysis. Till now, number of methods
and theorems are studied to analyze the network.

In the network synthesis, the procedure is exactly opposite to the analysis. The
excitation is known and the response requirements are known. It is necessary to find the
network satisfying the requirements. Thus obtaining a network for a known excitation and
known response requirements is called network synthesis.

The basic difference between network analysis and synthesis is shown in the Fig.
(a) and (b).

Known Response Known Known
0 Known pons 0 Net\;/ork
excitation network ? excitation ¢ response
(a) Network analysis (b) Network synthesis

Another important difference between analysis and synthesis is that the analysis gives
the solution i.e. response which is always unique. But synthesis may give different solutions
i.e. networks satisfying the required specifications. Then the synthesis does not give us unique
solution.

Then Synthesis is the process of finding a network corresponding to a given
driving point impedance or admittance (immittance = Impedance + admittance).

ELEMENTS OF REALIZABILITY

The starting point for any network synthesis problem is the network function N(s)
which is the ratio of response R(s) to the excitation E(s).

Elements of realizability is the study to determine whether the network function could
be realized as a physical passive network or not.

For any network function, there are two types of elements of realizability.
i) Hurwitz Polynomial : which is the denominator polynomial of the network function
satisfying certain conditions.
ii) Positive Real Function : which is important because it represents physically realizable
passive driving point impedance or admittances.
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HURWITZ POLYNOMIAL

A polynomial P(s) is said to be Hurwitz if the following conditions are satisfied:
(i) P(s) is real when s is real.
(ii) The roots of P(s) have real parts which are zero or negative.

Properties of Hurwitz Polynomials
1. All the coefficients in the polynomial

P(s) = aps" +ay_ys" " 4+ a5+ ag

are positive. A polynomial may not have any missing terms between the highest and the lowest
order unless all even or all odd terms are missing.

2. The roots of odd and even parts of the polynomial P(s) lie on the jw-axis only.

3. If the polynomial P(s) is either even or odd, the roots of polynomial P(s) lie on the jw-axis
only.

4. All the quotients are positive in the continued fraction expansion of the ratio of odd to even
parts or even to odd parts of the polynomial P(s).

[ Number of quotients = highest power of ‘s’ |

5. If the polynomial P(s) is expressed as W(s) Pi(s), then P(s) is Hurwitz if W(s) and P1(s) are
Hurwitz.

6. If the ratio of the polynomial P(s) and its derivative P’(s) gives a continued fraction
expansion with all positive coefficients then the polynomial P(s) is Hurwitz.

PROBLEMS ON HURWITZ POLYNOMIAL

1) State for each case, whether the polynomial is Hurwitz or not. Give reasons in each case.
i)s*+4s*+35+2 ii)s®+5s°+4s*— 352 +2s° +5+3

SOL:

i) In the given polynomial, the term s? is missing and it is neither an even nor an odd

polynomial. Hence, it is not Hurwitz.

ii) Polynomial is not Hurwitz as it has a term (-3s3) which has a negative coefficient.

2) Test whether the polynomial P(s) = s* + s3 + 5s2 + 3s + 4 is Hurwitz or not.
SOL:

Even part of P(s)=m(s)=s"+5s" +4
Odd part of P(s)=n(s)= s +3s

m(s)

n(s)

O(s) =
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By continued fraction expansion,
3 4,52
s 35T +557+4 (s

st +3s7
2 “ l
287+ 4) s+ 3.\‘(—.\‘
2

T +2s

) 25° +4 (2s
252

Since all the quotient terms are positive, P(s) is Hurwitz.

3) Test whether the polynomial P(s) = s3 + 4s2 + 5s + 2 is Hurwitz or not.
SOL:

Even part of P(s)=m(s)= 45° +2
Odd part of P(s) n(s)= s +35s

The continued fraction expansion can be obtained by dividing n(s) by m(s) as n(s) is of higher
order than m(s).

m(s)
45* + 2).\‘3 + 5.\‘(15‘
4

a2
ST +—5
4

C
3.\‘)452 +2(§5‘
2 9

45°
9 [
2)2_5.( 9.
2 4

Since all the quotient terms are positive, P(s) is Hurwitz.
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4) Test whether the polynomial P(s) = s® + 3s3 + 2s is Hurwitz or not.

SOL:

Since the given polynomial contains odd functions only, it is not possible to perform a
continued fraction expansion.

P'(s) = i)“(.\') =55+ 957 42
ds
P(s)
Hs)=
O(s) P7(s)

By continued fraction expansion,

55t +957 + 2) §+3s0 + 2.\-(;\-
J

5 9 3
ST +—=85 +—-8

5 5

6 ; 8 5 25
7).5"’ +F_s‘)5.5'4 +9s° +2(J_s‘
5 5 5

g 20 ,
St 4+t
3

7 5 6 ; 8 (I8
-5+ 2)7).\" + j.\'[—_\'

3 5 5 \35
6 5 36
—s +—=
5 35
20 )7 5 (49
— 5 |=5"+2| —s
35 /3 12
7 o
Ly
3

20 (10
2).\'(5‘
35 35

Since all the quotient terms are positive, the polynomial P(s) is Hurwitz.

5) Test whether the polynomial P(s) = 2 s® + s> + 13 s* + 6s3 + 56 s2 + 25 s + 25 is Hurwitz or

not.
SOL:

Even part of P(s)=m(s) = 25% +13s* +565% +25

Odd part of P(s)=n(s)= s> +65° +25s

_m(s)

O(s) =
n(s)
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By continued fraction expansion,
s° +65° +255)25% +13s* + 5657 +25(2s

25% +125% + 5052

st 465 + 25).\‘5 +657 + 25s(s

s> +65° +25s
0
The division has terminated abruptly.

P(s)=2s% +5° +13s* +65° +5657 +255+25 = (s* + 65> +25) (25> +5+1)

Let B(s)=s"+6s+25

A(s)
Rls)

Since P (s) contains only even functions, we have to find the continued fraction expansion of

Als)=4s +12s
By continued fraction expansion,
3 4 2 1
457 +12s | s  + 65" +25 zs
st 437
2 3 4
3s7+25 1457+ 12s E.\'

;100
457 + is
3

Since two of the quotient terms are negative, P (s) is not Hurwitz.
We need not test the other factor (2s°+ s + 1) for being Hurwitz.
Hence, P(s) is not Hurwitz.
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SOL:

That is,

This gives no value for K.

Therefore, the limit of K15 0 < K < 784.

6) Find the limits of K so that the polynomial s3 + 14s2 + 56s + K may be Hurwitz.

Odd part of the given polynomial, that is, o(s) = s* + 565
Even part of the given polynomial, that is, e(s) = 1452 + K

The continued fraction expansion is given by the following:

14s

56—£

14

K K
56—H]3 [56—E)S

X
' K

56 —£]3

14
X

Now, for the polynomial to be Hurwitz, quotient terms should be positive.

14

56>£

14
K <56x14
K <56x14

K <784
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POSITIVE REAL FUNCTIONS (or) BRUNE’S POSITIVE REAL FUNCTIONS (PRF)

A function F(s) is positive real if the following conditions are satisfied:
(i) F(s) isreal for real s.
(ii) The real part of F(s) is greater than or equal to zero when the real part of s is greater than
or equal to zero, i.e., Re F(s) 2 0 for Re(s) = 0.

Properties of Positive Real Functions

1. If F(s) is positive real then 1/F(s) is also positive real.

2. The sum of two positive real functions is positive real.

3. The poles and zeros of a positive real function cannot have positive real parts, i.e., they
cannot be in the right half of the s plane.

4. Only simple poles with real positive residues can exist on the jw-axis.

5. The poles and zeros of a positive real function are real or occur in conjugate pairs.

6. The highest powers of the numerator and denominator polynomials may differ at most by
unity. This condition prevents the possibility of multiple poles and zeros at s = co.

7. The lowest powers of the denominator and numerator polynomials may differ by at most
unity. Hence, a positive real function has neither multiple poles nor zeros at the origin.

The necessary and sufficient conditions for a function with real coefficients F(s) to be positive
real are the following:

1. F(s) must have no poles and zeros in the right half of the s-plane.

2. The poles of F(s) on the jw-axis must be simple and the residues evaluated at these poles
must be real and positive.

3.Re F (jw) =2 0 for all w.

REQUIREMENTS FOR POSITIVE REALNESS OF SIMPLE RATIONAL POLYNOMIAL QUOTIETNS

. Requirement for F(s) to be
S.No. Type of Function, F(s) Positive Real

5+

1. F(s)=s+i a, B real a B >0
ks

2. F(s) = i g’ a, k real ak>0

s+a iJab,c>0

F = Y . r r b} i I - ’ ’ /
3. (s) s2+bs+c @ocrea ii)b>a
P tasta i) ao, a1, bo, b1 >0

1 4]

4. | F(s) = m . Qg,Qy, by, by Teal i) a; by, = [\,’?0 - V’E]z
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EVEN AND ODD PARTS OF A FUNCTION E(s)

Let a function
P(s)
F(s) = —
Q(s)
Separate even and odd parts
F(s) = ey(s) +o0,(s)
e;(s) +0,(s)

Divide and multiply with e2(s) - 02(s)

e1(s) +04(s)  ez(s) — 0a(s)

F(s) = ex(s) +02(s)  ez(s) — 03(s)

e1(s) ex(s) —0,(s) 0,(s)

Even[F(s)] = Re[F(jw)] =

[e2(s)]? — [02(s)]?

e,(s) o;(s) — e;(s) 05(s)

0dd[F()] = jim[F(e)] = ——rSm—r 57

PROBLEMS ON POSITIVE REAL FUNCTIONS

s+3
1) Test whether F(s) = 1 is a positive real or not.
s
SOL:
N(s s+3
(a) F(s)= )_
D(s) s+1
The function F(s) has pole at s = —1 and zero at s = —3 as shown in
Fig.

Thus, pole and zero are in the left half of the s-plane.
(b) There is no pole on the jw axis. Hence, the residue test is not carried
out.

(¢) Even part of N (s

(

Odd part of N (s

Even part of D (s
(

)=
)=n
) m =1
)=1

Odd part of D(s

A(wzj = myhny —min 's:jw: (3)“) _(5)(\) iS:jw: 3 _S: |As:jw: 3+ wZ

A(a?) 1s positive for all @> 0.

Since all the three conditions are satisfied, the function is positive real.

Jew
A
c—t
-3 -2 110
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s24+6s5+5

2) Test whether F(s) = is positive real function or not.

s2+9s+ 14
SOL:
N(s) s +6s s+5)(s+1 :
(a) F(S)Z'V(s): : s+5 :(s )(s+1) jo
D(s) s"+9s+14 (s+T)(s+2) i
The function £ (s) has poles at s =—7 and s = -2
and zeros at s =—5 an s = —1 as shown in Fig.
Thus, all the poles and zeros are in the left half
of the s plane. —o——f o > o
(b) Since there is no pole on the jw axis, the residue 765 -4-3-2 -1 [°

test is not carried out.
(c) Evenpartof N(s)=m = s %5
Odd part of N(s) =mn = 6s
Even part of D(s) = m;, = 2 +14
Odd part of D(s) =ny =9s
A ) = mmy —mny | j= (5" +5) (s° +14) = (65)(95) [s=jo= 5" =355” +70 |s— ;0= 0" +350° +70
A( ) is positive for all @= 0.

Since all the three conditions are satisfied, the function is positive real.

s(s+3)(s+5)
(s+1)(s+4)

3) Test whether F(s) = is positive real function or not.

SOL:
N(s) s(s+3)(s+5) s® +8s% +15s
D(s) (s+D)(s+4) s> +55+4
The function F{s) has poles at s =—1 and s =—4 and jw
zeros at s =0, s =3 and s = —5 as shown in Fig.
Thus, all the poles and zeros are in the left half of
the s plane.
(b) There is no pole on the jwaxis, hence the residue test s s :
is not carried out. 5 4 3 -2 0
(c) Evenpartof N(s)=m = 85>

Odd part of N(s)=nmy = s° +13s

(a) F(s)=

Even part of D(s) =m, = s24+4
Odd part of D(s) =n, =5s

A(®*) = mymy —mny |s= jo= (85> )s” +4) = (s* +155)(55) |y jo = 35" =435 |s= jp= 300" + 4300

A( @) is positive for all @= 0.
Since all the three conditions are satisfied, the function is positive real.
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s?2+1

4) Test whether F(s) = is positive real function or not.

s +4s
SOL:
N(s) 241 (s+j)(s—jl Jo
@ Fo=NO LA 4= ;
D(s) s +4s  s(s+j2)(s—j2) 2
The function F{(s) has poles at s =0, s =—;2 and s = ;2 and zeros at s = —j1 O /1

and s = j1 as shown in Fig.

Thus, all the poles and zeros are on the j@ axis.
(b) The poles on the jw axis are simple. Hence, residue test is carried out.

5741 sT+1
F(s)=— — 3
sT+4s  s(sT+4)

By partial-fraction expansion,

Ki K K>
F(.s‘)2—1+ 2_ +—=
s s+j2 s—j2

The constants K , K, and K,* are called residues.

s7 41 1
Ky =5 F(s)|s=0=— ==
s +4 0 4
s7+1 —4+1 3
Ky =(s+ j2)F($) |y=— jo=———— =ie— P R
sts=Jj2)|__,, i2N-j2-/2) 8

Thus, residues are real and positive.
(¢) Evenpartof N(s)=my = st +1
Odd part of N(s)=m; =0
Even part of D(s) =m, =0
Odd part of D(s)=n, = s° +4s
A(cuz) = mmy —mny |s= = (5" +1)(0) = (0)(s” +4s) = ;=0

A(a?) is zero for all = 0.
Since all the three conditions are satisfied, the function is positive real.
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s24+s5+6

5) Test whether F(s) = Zist1

SOL:

is positive real function or not.

i [.5‘+—+._;— -
N(s) s +s+6 2 2 2 2

D(.s)_.s3+s+1'{ 1 @}[ 1 _ﬁ}
St+—+ 77— ||s+=-—J]—

B (cnd- )
(a) I(s)=

2 2 2 "2

3

The function F(s) has zeros at s = ——+ j——and polesat s =——=+ j—.
2 72 2 72

(b) There is no pole on the jw axis. Hence, the residue test is not carried out.
(c) Evenpartof N(s)=m = s*+6

Odd part of N(s)=mn ==

Even part of D(s)=m, = s2+1

Oddpart of D(s)=mn, =

A(@®) = mymy —mny |o— j= (5" +6)(s” +1) = (5)(5) |s= jo= 5" +65° + 6= jo= 0 — 60" +6

Forw=2, A(&*)=16-24+6=-2
This condition is not satisfied.
Hence, the function F(s) is not positve real.

ELEMENTARY SYNTHESIS CONCEPTS

We know that impedances and admittances of passive networks are positive real
functions. Hence, addition of impedances of the two passive networks gives a function which

is also a positive real function. Thus, Z(s) = Z1(s) + Z2(s) is a positive real function, if Z1(s) and

Z2(s) are positive real functions. Similarly, Y(s) = Y1i(s) + Y2(s) is a positive real function, if
Y1(s) and Yz(s) are positive real functions. There is a special terminology for synthesis
procedure. We have,

Z(s) = Z)(s)+ Z»(s) _

Zy(s) = Z(s)—Z;(s) 4(s)
Here, Z (s) is said to have been removed from 25)— Z(s) :I Zy(s)
Z(s) in forming the new function Z,(s) as shown in o— O————
Fig. If the removed network is associated
with the pole or zero of the original network o———
impedance then that pole or zero is also said to ¥(s) Y(s) Yi(s) Yo(s)
have been removed.

There are four important removal operations.
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1) Removal of a Pole at Infinity

Consider an impedance function Z(s) having a pole at infinity which means that the numerator polynomial is
one degree greater than the degree of the denominator polynomial.

1 -1
(JHH.\"H + an.s'” +...+qs+aq (',,.\'” + Cn,l.\'“ +...+s+¢

Z(s) - =Hs+ =

bys" +byys" T .+ bs+ by bps" + by 1s" T+ .+ s+ by

where i o=l
b,

Let Zi(s)=Hs

cps” + Cp— .\"H +...+oy+c
and Zy(s) =" = YN0 — Z(s)- Hs

bys" + b,y 8" L+ bs+ by

Z (s) = Hs represents impedance of an inductor L
of value /. Hence, the removal of a pole at infinity o— B0 — o—T ]
corresponds to the removal of an inductor from the ~ 4(5) Z(8) ¥(s) T c Zy(s)
. o

network of Fig.(a).

If the given function is an admittance function
Y(s), then Y (s) = Hs represents the admittance of
a capacitor Y (s) = Cs. The network for ¥ ,(s) is a
capacitor of value C = H as shown in Fig.(b).

2) Removal of a Pole at Origin

If Z(s) has a pole at the origin then it may be written as

n—1 n - n—l1

+a,s Ky dy+dos+...+d,s
2 m =" m—1 Zi (S) +2 (5)
bis+bys® + ...+ b,s S by+bys+.. . +b,s

dg+as+...Fd,8

Z(s)

- dy
where Ky=—
b]

-

Ky . . 1
Z(s) = — represents the impedance of a capacitor of value "
5 0

. o : . Ky .
If the given function is an admittance function ¥(s) then removal of Y;(s) = — corresponds to an inductor
S8
1
of value —.
0

Thus, removal of a pole from the impedance o—F—
function Z(s) at the origin corresponds to the zis) © Zs(8) Y(s) L Zy(s)
removal of a capacitor, and from admittance o—————
function ¥(s) corresponds to removal of an (a) (b)

inductor as shown in Fig.
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3) Removal of Conjugate Imaginary Poles

If Z(s) contains poles on the imaginary axis, i.c., at s = £ j@, then Z(s) will have factors (s +j®)) (s — j@,) =
s+ @,” in the denominator polynomial

Z(s) = p(s)
(s> +0f )i (s)
By partial-fraction expansion,
Z(s) = KK + Z5(s)

.s'+‘jw1 .\‘—jwl

For a positive real function, jwaxis poles must themselves be conjugate and must have equal, positive and
real residues.

Ky =K,
2Ks
Hence, Z(s)= 77”7+ Z5(5)
ST+
2Ks 1 1
Thus, Zi(s)=—1 = -
ST+ s mf Y. +Y,
2K, 2Ks
. s . . . . 1
where Y, = —— is the admittance of a capacitor of value C' = —
2K, 2K,
N
(O : : 2K
and Y, = j is the admittance of an inductor of value L = ==
Kis w;
If the given function is an admittance function ¥(s) then
2K;s 1 1
i) === = ;
ST+ ZatZ s N wy
2K1 ZKI.\'
where Z, = s the impedance of an inductor of value L = and Z;, = L is the impedance of
2K, 2K, 2K;s
: K
a capacitor of value C = jl
O L
Thus, removal of conjugate imaginary poles @—ET:I»
from impedance function Z(s) corresponds to the Z(s) c Z,(3) Y(s) L Z,(s)
removal of the parallel combination of L — C and - - —=C

from admittance function Y(s) corresponds to
removal ot series combination of L — C as shown
in Fig.
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4) Removal of a Constant

If'a real number R is subtracted from Z (s) such that
Zy(s)=Z(s)- R
Z(s)= R +Z,(5)

then R represents a resistor.

If the given function is an admittance function ¥(s), then removal of ¥ (s) = R, represents a conductance
of value R .

Thus, removal of a constant from impedance function Z(s) corresponds to the removal of a resistance, and
from admittance function ¥(s) corresponds to removal of a conductance.

R:
O O
Z(s) Z,(8) Y(s) Gm Y,(s)
O O

G- L
R

PROBLEMS ON REALIZATION OF NETWOTK FUNCTIONS
s3 + 4s
s24+2°

1) Synthesize the impedance function Z(s) =

SOL:
By long division of Z(s),

5%+ 2) s +4s (.s‘

s 425
2s

2s

Z(s)=s+ ‘2=ZJQ+ZJQ

.
s°
Z (s) = s represents impedance of an inductor of value 1 H.

I s 42 502

1
Yo(s)= = —+—=—5+—=N(s)+Ys(s

2(9) Z(s) 25 25 25 2 s )+

1 _ . _ . 1
3(s) = —s represents the admittance of a capacitor of value —F. 1H

2 T
. 1 . . .
u(s)= ;1eplesents the admittance of an inductor of value 1 H. Zis) L iH

The impedances are connected in the series branches whereas
the admittances are connected in the parallel branches. The network
is shown in Fig.

O
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2) Realize the network havine impedance functi z()—ﬁgSJFSSZ%S+4
) eallze ene or aVIHg lnlpe ance iuncrion 5= 253 + 25
SOL:

By long division of Z(s),

257 + 2.5*] 65° +55° +65+4 (3

65> +6s
55 +4
55% +4
Z(s)=3+2 7 _ 7(8)+ Zy(s)
25  +2s

Z (s) = 3 represents the impedance of a resistor of value 3 €.

v, (s) I 257 +2s
§)= =
’ Zy(s) 557 +4

By long division of Y (s),

. 2
5s% + 4] 25 + 25 (g.s‘

257 + ﬁ.s‘
2
_-s‘
5

2
2 5
YE (S) = E.‘s‘ + m = Y3 (b) + Y4 (S)
A

. . . . 2
3(s) = g.\‘ represents the admittance of a capacitor of value —F.

| S5s744 25¢°+20 25 10
Z4(s) = = - -

—s+—=Z5(5)+ Zs(5)
() 2, 2s 2 s '
5
: - . 25 25, 1.
Zs(s) = —s represents the impedance of an inductor of value — H. 3Q 2 10
2 o— T I F—
o T
Zg(s) = — represents the impedance of a capacitor of value —F. Zls) 2
s ’ 5
The impedances are connected in the series branches, whereas the T
admittances are connected in the parallel branches. The network is

shown in Fig.
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_ _ _ _ 4s% + 6s
3) Realize the network having admittance function Y(s) = ———

s+1
SOL:
By long division of ¥(s),
s+ '1} 4s* +6s {4.5‘
4s* +4s
2s
7 2'5‘ 7 7
Y(s)=4s+ = N(s)+Ys(s)
s+1
Y,(s) = 4s represents the admittance of a capacitor of value 4 F.
1 s+1 1 1
Zy(s) = —— =" =t — = Zs(5)+ Z4(s)
Yo(s) 2s 2 2
| : . : . I 1o
Z3(s)=— represents the impedance of a resistor of value — €. 2 2F
2 2 o AAA
1 . . o
Z4(s) = R represents the impedance of a capacitor of value 2 F. Z(s) L 4F
The impedances are connected in the series branches, whereas the
admittances are connected in the parallel branches. The network is
shown in Fig.
) ) ) ) 3+ 5s
4) Realize the network having admittance function Y(s) = At 25
s

SOL:
By long division,

3.2
Y(s)=—+ = Y, (s)+ Y- (s
(5) =5+ 75 = )+ ()
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3 . . . . 4
1(s) = 1 represents the admittance of a resistor of value 3 Q.

1 4+2s 8+4s 8 4
Zy(s)= Hs) Z\. = 7S+ - = Z3(s)+ Zy(s)
2

8 . . : . 7 TE 20
Z5(s) = — represents the impedance of a capacitor of value —F. 8 7

7s 8 o I }_/\/\/\/7
Z4(s) = %nepresents the impedance of a resistor of value % Q. % Q
The impedances are connected in the series branches, whereas the

admittances are connected in the parallel branches. The network is
shown in Fig.

SYNTHESIS OF NETWORKS BY FOSTER’S AND CAUER’S METHODS

The Foster’s method of network synthesis uses the partial fraction expansion of the
driving point immittance function. Foster is of two types: Foster form-I(Series) and Foster
form-II(Parallel). When the driving point function is an impedance, it is referred to as Foster
form-I. Foster form-II is used for driving point admittance function.

The Cauer’s methods (Ladder) employ continued expansion approach to synthesize a
given immittance function. In Cauer form-I, the terms of both numerator and denominator are
arranged in descending degree of s. In Cauer form-II, the terms in the numerator and
denominator polynomials of the driving point immittance function are arranged in ascending
order.

For one port networks, they are synthesized into LC, RC and RL networks.

SYNTHESIS OF ONE PORT ‘LC’ DRIVING POINT IMMITTANCE FUNCTIONS

Properties of LC driving point immittance functions

1. It is the ratio of odd to even or even to odd polynomials.

2. The poles and zeros are simple and lie on the jw-axis.

3. The poles and zeros interlace on the jw-axis.

4. There must be either a zero or a pole at the origin and infinity.

5. The difference between any two successive powers of numerator and denominator
polynomials is at most two. There cannot be any missing terms.

6. The highest powers of numerator and denominator polynomials must differ by unity; the
lowest powers also differ by unity.

The general form of the partial fraction expansion of LC immittance positive real
function is given by

F(s)= —4+———+ i v - + - +K, s
5

s2 + w,? 52 +wj2
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FOSTER-I1 FORM (OR) FIRST FOSTER FORM

If the given function F(s) is an impedance function Z(s), then it can be realized in the
first Foster form. The network consists of a series capacitor, a number of parallel LC networks
and a inductor as shown in the fig.

L, L,
CO
Ly L
C, C,
Z(s) > L.

O

The values of the elements are

2K,

L="=

I w;

O il O
1 o o
Co = Ko I L.=K..
D |
1
'O2K,

If Z(s) has no pole at the origin then capacitor Co is not present in the network. Similarly,
if there is no pole at o, inductor L is not present in the network.

FOSTER-II FORM (OR) SECOND FOSTER FORM

If the given function F(s) is an admittance function Y(s), then it can be realized in the second
Foster form as shown in the fig.

F(5) =7 (5) = 222t K = (5) 12 (5) .7, (9
O -
Y(s)—> Lo L %L; — )
o T—&% TG
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The values of the elements are

1
L = —
| 'K, ]
Ly=— 2K C.=K..
K C,=— Q——l_
o T w;

If Y(s) has no pole at the origin then inductor Lo is not present. Similarly, if there is no pole at
infinity, capacitor Cw is not present.

CAUER REALISATION OR LADDER REALISATION

CAUER-1 FORM (OR) FIRST CAUER FORM

Since the numerator and denominator polynomials of an LC function always differ in
degrees by unity, there is always a zero or a pole at s = eo. The Cauer | Form is obtained by successive
removal of a pole or a zero at infinity from the function.

Consider an impedance function Z(s) having a pole at infinity.
By removing the pole at infinity, we get

Zs (.s‘)z Z(.s‘) —-Lys
Now, Z,(s) has a zero at s = ==. If we invert Z,(s), ¥,(s) will have a pole at s = oo,
By removing this pole,

()= Ta(s)— Cas

Now Y_(s) has a zero at s = e, which we can invert and remove. This process continues until the remainder
is zero. Each time we remove a pole, we remove an inductor or a capacitor depending on whether the function
is an impedance or an admittance. The impedance Z(s) can be written as a continued fraction expansion.

Thus, the final structure is a ladder network whose series arms are inductors and shunt arms are capacitors.
The Cauer I network is shown in Fig.

Ly Ly 4 Z3
Z(s)— I Co 1 c, Zs)— Yz Yy
. 1 17 E E]
(a) (b)
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If the impedance function has zero at infinity, i.e., if degree of numerator is less than that of its denominator
by unity, the function is first inverted and continued fraction expansion proceeds as usual. In this case, the
first element is a capacitor as shown in Fig.

L, Ly
oI ’m\l
Z(s)> == C; =Gy —‘—Cs Z(5)>
C _——
(a)

CAUER-II FORM (OR) SECOND CAUER FORM

Since the lowest degrees of numerator and denominator polynomials of LC function must
differ by unity, there is always a zero or a pole at s = 0. The Cauer II form is obtained by successive removal
of'a pole or a zero at s = 0 from the function.

In this method, continued fraction expansion of Z(s) is carried out in terms of poles at the origin by
removal of the pole at the origin, inverting the resultant function to create a pole at the origin which is
removed and this process is continued until the remainder is zero. To do this, we arrange both numerator and
denominator polynomials in ascending order and divide the lowest power of the denominator into the lowest
power of the numerator. Then we invert the remainder and divide again. The impedance Z (s) can be written
as a continued fraction expansion.

1 1
Z(s)=—+
Cis L+ B S Ci Cs
Lys | I o— |-
2 +——
Gs 1|
Lys Z(s)—= Ly Ly
Thus, the final structure is a ladder network whose first element o 1

is a series capacitor and second element is a shunt inductor as
shown in Fig.

If the impedance function has a zero at the origin then the first Co Cy

element is a shunt inductor and the second element is a series © 1 L
capacitor as shown in Fig.

Thus, the LC function F(s) can be realised in four different Z(s)— Ly L3 Ls
forms. All these forms have the same number of elements and

the number is equal to the number of poles and zeros of F{(s) S ———

includng any at infinity.
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PROBLEMS ON LC FUNCTIONS
1) Realise the Foster and Cauer forms of the following impedance function

CA(s+1)(s7+9)
Z(s) = s(s?2+4)

SOL:

The function Z(s) has poles at s =0 and s = % ;2 and zeros
ats =171 and s = £ /3 as shown in Fig.
From the pole-zero diagram, it is clear that poles and zeros are simple j3
and lie on the j@ axis. Poles and zeros are interlaced. Hence, the given
function is an LC function.

Jw

Foster I Form The Foster I form is obtained by partial-fraction
expansion of the impedance function Z(s). But degree of numerator is >
greater than degree of denominator. Hence, division is first carried out.

—j1
Z(s) = 4(s* + ?(SZ +9) _ 45* +,40“‘2 +36 2
s(s“+4) sT+4ds 3
57 +45) 45 +405° +36 (4s
45" +16s°
245 +36
Z(s)=4s +M =4s +M
57+ 4y s(s* +4)

By partial-fraction expansion,

K K K, Ky 2Ks
Z(s)=ds+—L4——L 4 1 _ggp 2020
s s+j2 s—j2 O e |
C
where K, :_gZ(_g)‘ o= 4(1)(9) —9
5= 4
P (s +4)Z(s) CA(—4+1D)(—4+9) 15
| 25 |, 2(—4) 2
9 15s
Z(s) = 4s+—+——
S s°+4

The first term represents the impedance of an inductor of 4 H. The second term represents the impedance

. 1 . .
of a capacitor of ry F. The third term represents the impedance of a parallel LC network.

1
=15
C

2, 1
ST+
LC

For a parallel LC network,

Zic(s)=

By direct comparison, (= LF
15
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co|—~

4 H

3

15
L=—H
4

The network is shown in Fig.

o

Foster Il Form The Foster II form is obtained by partial-
tfraction expansion of the admittance function ¥(s).

S

2
s(s“+4
Y(S) _ ;(5 + 2)
4(s*+1)(s"+9)
By partial-fraction expansion,
K Ki Ky K, 2Ky 2Kjs
}/(_\')2 1. + 1. + .,. + _d. — . 18 n . 258
s+l s—j1 s+j73 s—j3 s +1 s 49
s” ~1+4
where K, = (s"+1) Y(s) _ 44 3

1_8(—1+9)_64

2 4 _
K;z(‘s +))Y(.s') =( 9+4):i
2s 5 8(-9+1) 64

§7==9

3 )

§2 +1 2 +9

Y(s)=

These two terms represent admittance of a series LC network. For a series LC network,

Yie(s)= 1
P
N —
LC
By direct comparison,
2 3 ©
L =2H O == La 15
3 32 32 288
2 5 32
L=ZH  Geos %a“ SH
5 288 o

The network is shown in Fig.
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Cauer I Form The Cauer I form is obtained from continued fraction expansion about the pole at

infinity.
s* +40s% +36

4
Z(s)= -
50 +4s

Since the degree of the numerator is greater than the degree of the denominator by one, it indicates the
presence of a pole at infinity.

By continued fraction expansion,
s+ 4.9) 45" +405” +36 [ 4s¢Z

45* +165°

245% + 36}.\'3 + 43(is «—Y
24

S+
P
— .s‘)24.s‘“ +36 ( —s5«Z
245
5 5
36) —s| s« Y
2 \7
5
b
2
0
48
4 H 5 1
o 000 000
The impedances are connected in the series branches whereas 1 s
the admittances are connected in the parallel branches in a Cauer T 2aF —75F
or ladder realisation. The network is shown in Fig.

O
Cauer Il Form The Cauer II form is obtained from partial-fraction expansion about pole at origin.
AP HD(sE+9) 45 +405% 436
s(s* + 4) s +4s

The function Z(s) has a pole at origin. Arranging the numerator and denominator polynomials in ascending

Z(s) =

order of s,
36 +40s* + 45"

Z(s)= -
4s+5°
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By continued fraction expansion,

N C
45+ 5 )36 +40s* +45* [3 —7Z

A

36+ 9s°

| _ [ 4
317 +4st )43 50 (— —Y

31s

16 -
4s+—s

31

X X G
Eﬁ }31.« +4g* (ﬂ — 7
31 15y

3157

lad

Y15 15
45" ) —s ( —Y
31 1245

15 5
—8
31
0
1 15
— F _
9 961 F
o—] |
The impedances are connected in the series branches whereas the
admittances are connected in the parallel branches in a Cauer or 31y 124,
e nalieats 1 : : : 4 15
ladder realisation. The network is shown in Fig.
O

2) Realise Foster forms of the LC impedance function
7(s) (s +1)(s%? +3)
S =
s(s?2 +2)

SOL:

Foster I Form The Foster | form is obtained by partial-fraction expansion of the impedance function Z(s).
Since the degree of the numerator is greater than the degree of the denominator, division is first carried out.

(s*+(s*+3) 5" +457+3
s(s* + 2) sY 42

Z(s) =

50+ 2y ).S‘4 + 457 + 3[ K

st 247
25* 43
25743 257 43
Z(s)=s+ f =5+ Sj
S +2s s(s”+2)
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By partial-fraction expansion,

K K Ky Ky 2K;s
Z(s)=s+——p L 4 1 o 20y - 15
s s+j2 s—j2 s 5742
(D(3) 3
where Ko =8Z(8)|s=p= ——=—
0 (5)ly=0 ) >
242 “24+1)(-243) 1
K]:“+)Z(.s-) _(2+D(=243) 1
2s 2= 2(_2) 4
2 13
2) 1)
Z(s)=s+ +—
s sT+2

The first term represents the impedance of an inductor of 1 H. The second term represents the impedance

. . .2 . . .
of a capacitor of 3 F. The third term represents the impedance of a parallel LC network.

)
— ¥
AC)

For a parallel LC network,

N

. N g
Zic(s)= 1 1H 5 F
o o—— 50— |
By direct comparison,
C=2F —2F
L=—H ©

The network is shown in Fig.

Foster I Form The Foster II form is obtained by partial-fraction expansion of the admittance function ¥(s).

Y(s)= .s‘(.s‘z +2)
(s% + I)(.s‘2 +3)
By partial-fraction expansion,
K, K, K, K> 2Kys  2Kss
Y(s)= —+——+ + =+
s+jl s—j1 s+ j\E .s'—j\B s 41 s7+3
57 +1 ~1+2) 1
where K, = s ) Y(s) = g =—
25 2 2(-1+3) 4
43 3+2 1
ngu}’(.s') ===
2s 2o 2(-3+1) 4
) 3]
5 A 5 8
Y(s)= +

S+l 243
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These two terms represent admittance of a series LC network. For a series LC network,

)
L)
Viels) =~

5 1
_l_

_ _ LC o
By direct comparison,

A

n

gl
|
)
as)
)
Il
|
s
o
000 — H
NooN|—
T
000 —
A% o')l_L
T =

The network is shown in Fig.

3) Realise Cauer forms of the following LC impedance function
265) 10s* +12s% + 1
S =
2s3 + 2s
SOL:

Cauer I Form The Cauer | form is obtained from continued fraction expansion about the pole at infinity.

105" +1257 +1
25 +2s

Since the degree of the numerator is greater than the degree of the denominator by one, it indicates the
presence of a pole at infinity.

By continued fraction expansion,

Z(s)

25° +25) 105 +1252 +1(5s « Z
10s* +10s”

257 +1)25° +25(s - ¥
25 45

$)257 +1(2s « Z
257

l)x(.\' «— Y
8
0
The impedances are connected in the series branches whereas the admittances are connected in the parallel
branches in a Cauer or ladder realisation. The network is shown in Fig.

5H 2H

—1F
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Cauer Il Form
origin.
10s' +125% +1

Z(s)= —

257 +2s

ascending order of s,

1+125% +10s"
25+2s°

By continued fraction expansion of Z(s),

Z(s)=

5 ) 1
25 +2s° )1+ 125 +10s" (2— 7
S

1+ s

The impedances are connected in the series branches
whereas the admittances are connected in the parallel
branches in Cauer or ladder realisation. The network is

shown in Fig.

The Cauer Il form is obtained from continued fraction expansion about the pole at the

The function Z(s) has a pole at the origin. Arranging the numerator and denominator polynomials in

H)n’ 10.&(E Z
A
l1s
10.&)3@ 2 —Y
11 {110s
2 3
—5
11
0
2
oF 121"
|1 ||
|1 |1
11 110
2 H é?“
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4) Realise the following network function in Cauer I form
6s* + 42s? + 48

s + 18s3 + 48s

Z(s) =
SOL:

The Cauer I form is obtained by continued fraction expansion of Z(s) about the pole at infinity.
In the above function, the degree of the numerator is less than the degree of the denominator which indicates
the presence of a zero at infinity. The admittance function Y(s) has a pole at infinity. Hence, the continued
fraction expansion of ¥(s) is carried out.

s +18s” + 485

}I(S) — 4—1
65 +42s” +48

By continued fraction expansion
4 2.2 5 aredd wacef ] ,
65" +425° +5° |57 +18s” +48s ?‘; Y
D

O+ 757+ 8
s (6 ,
15" +4(Js]os“ +425° +48(1—)1.s- 7

240 ,
6.\'4 +T.\'_

222 , . N (121
5 430 115" +40s) —s &Y
11 99

i

. 5808
11s™ + s
222
3072 222 , [ 49284
§|—s~ +48 §
222 11 33792
222 4
_s'
11
3072 (128
48) x(———sé—)’
222 444
3072
220"
0

The impedances are connected in the series branches whereas the admittances are connected in the parallel
branches in a Cauer or ladder realisation. The network is shown in Fig.

6 49284
i 33792 1
o OO0 IR
11 1121 1 128
-8 T 22" T aaa’
O
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5) Realise Cauer II form of the function

s(s*+3s2+1)

Z(s) =

SOL:

35t + 452 +1

The Cauer II form is obtained by continued fraction expansion about the pole at the origin. The
given function has a zero at the origin. The admittance function ¥(s) has a pole at origin. Hence, the continued

fraction expansion of ¥(s) is carried out. Arranging the polynomials in ascending order of s,

35t +as+1 1+ 45% +35°

Yie(s)=

By continued fraction expansion of ¥(s), we have

¢ 357+ s+3s°

. . 1
S+357 +5° )1 +45% +35% (— «Y
5

1 +3s%+ s°

2 3 5 1 .
§7 +2s" ]_s' +357 +5° {— — 7
s

s+2s°

The impedances are connected in the series branches whereas
the admittances are connected in the parallel branches in a Cauer
or ladder realisation. The network is shown in Fig.

+5°

1H

1H

1H
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SYNTHESIS OF ONE PORT ‘RC’ IMPEDANCE / ‘RL’ ADMITTANCE FUNCTIONS

RC driving point impedance/ RL admittance functions have following properties:
1. The poles and zeros are simple and are located on the negative real axis of the s plane.
2. The poles and zeros are interlaced.
3. The lowest critical frequency nearest to the origin is a pole.
4. The highest critical frequency farthest to the origin is a zero.

5. Residues evaluated at the poles of Zrc (s) are real and positive.

4 . .
6. The slope TZR(- 1s negative.
do

7. Zre(o0) < Zie (0).

RC functions can also be realised in four different ways. The impedance function of RC networks is given by,
_H(s+0)(s+03)...
sS(s+07)...

FOSTER-I1 FORM (OR) FIRST FOSTER FORM

Z(s)

The Foster I form is obtained by partial-fraction expansion of Z(s).

K K K
Z(s)=—24 2L 422 4 4K
s s+0; s+0,

where K, K, K,, ... K_ are residues of Z(s).

K, = .s‘Z(s)L:U

K =(s+0,)Z(s)|s = -0,
_Z(y)

s

K..
s —oo

i

The first term

) . . . N
represents the impedance of a capacitor of —— farads.

§ ]

The last term K represents the impedance of a resistor of K_ ohms.

-

The remaining terms, i.e., represent the impedance of the parallel combination of resistor R, and

s+ 0;
capacitor C. For parallel combinaton of R and C,
(L),
S
Z(s) _ sl _ i
s+0;
R +— PO
C;s
Ri=—"and C,=—
O; Ar’
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CO R1 HJ
The network corresponding to the Foster-I form is shown in =~ 7 _, C, o

. A..
Fig.

The values of the elements are

K
Ri = —
e o
1 e A% 0
C[]—— RT:KT
K
c oL
K,

FOSTER-II FORM (OR) SECOND FOSTER FORM

The second Foster form is obtained by expanding the specified RC admittance function
in partial fraction.

The Foster-11 form is obtained by partial fraction expansion of ¥s). Since ¥ (s) =

Y(s)

has negative residue at its

pole, Foster Il form is obtained by expanding

Y(-\‘) _ KU + - K{

+ K.
S s S (s+0;)
Kis Kis ,
Y(s)=Ko+——+ -4 ———+---4+ KS

Then the above equation can be realized as RC admittance network as shown in the fig.

O

oo

Y(s) —> §RO § Ri é Ri ~

— Ci —
O
Where
1 K
Rj==— Ci=—
1 K O,
R{)— K— CWZ K&
0 K
R_ = 1— C - —1
1 K 1 o
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CAUER-I FORM (OR) FIRST CAUER FORM

The first Cauer from is obtained by expanding the RC impedance function in continued
fraction about infinity. The impedance function in partial fraction is given by
K K K> i
Z(s) = —+——+——+. .+ K.
N s+0, S+0>
The continued fraction expansion is given by
1
Z(S) = 51 + 1
Pas + T

ﬁ3+ﬁ45+--- ......

The first Cauer form of the network is shown in the fig.

R1 Rs
— NN~ NN
b1 B3

28) PG, BaTi Cy

-

If Z(s) represents an admittance function, then the first Cauer form represents RL
admittance realization. The admittance function in partial fraction is given by

K K K
Y(s) = Oy 2 2 4 4K
s s+0; s+0,

The continued fraction expansion is given by

1
Y(S) = Bl + 1
Pas + 1
Pz +
3 £4,5 + "t ane s
The first Cauer form of RL admittance is shown in the fig.

L2 L4
3 /OUTD) [DOTDL

B2 Ba

1 1

E E R1 RB_ E """"
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CAUER-II FORM (OR) SECOND CAUER FORM

The Cauer II form is obtained by removal of the pole from the impedance function at the
origin. This is the same as a continued fraction expansion of an impedance function about the
origin. If the given impedance function has a pole at the origin, it is removed as a capacitor Ci.
The reciprocal of the remainder function has a minimum value at s = 0 which is removed as a
constant of resistor Rz. If the original impedance has no pole at the origin, then the first
capacitor is absent and the process is repeated with the removal of the constant corresponding
to the resistor Ra.

The impedance Z(s) can be written as a continued fraction expansion.

1 ]
Z(s)= +
C.T] S 1 1
R 1 1
2 4 :
C 38 4
Ry
Gy Cs Ch_1

The network is shown in Fig.

O —_————
If Z(s) represents an admittance function, then the second Cauer form represents RL
admittance realization.

The continued fraction expansion is given by

1
Y(s)=c

—+...
Ry

The second Cauer form of RL admittance is shown in the fig.

A
1/R; 1/R4

Y(s) L

\Quaaf

Cq L3 ' & Cs
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PROBLEMS ON RC NETWORKS

1) Realise the Foster and Cauer forms of the impedance function

J 2]

(s+1)s+3
Z(s) = ) )
s(s+2)
SOL:
The function Z(s) has poles at s = 0 and s = -2 and A

zeros at s =—1 and s =3 as shown in Fig.

From the pole-zero diagram, it is clear that poles and zeros are
simple and lie on the negative real axis. The poles and zeros are
interlaced and the lowest critical frequency nearest to the origin is

-3 -2 -1
a pole. Hence, the function Z(s) is an RC function.
Foster I Form The Foster | form is obtained by partial fraction
expansion of impedance function Z(s). Since the degree of the
numerator is greater than the degree of the denominator, division
is first carried out.
s*+4s5+3
Z(s)=—F5——
§T+ 28
5%+ 2.\‘)33 +45+ 3( 1
s +2s
25+3
2543 2543
Z(s)=1+— =1+
sT+2s s(s+2)
By partial-fraction expansion,
K ’s
Z(s)=1+—L+ 22
s s+2
3 3
where Ky =sZ(s) . E) )B) =—
5= 2 2

(—2+D(-2+3) 1

Ky =(s+ Z)Z(‘Y)L:—z =

)
3 1
Z(s)=1+2+—2
s s+2

2
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The first term represents the impedance of a resistor of 1 . The second term represents the impedance of

. 2 . . N .
a capacitor of gF. The third term represents the impedance of parallel RC circuit for which

By direct comparison,

The network is shown in Fig.

Foster II Form
Y(s)

S

By partial-fraction expansion,

where

1 2
C 10 3k
Zre($)=——"1— o—AAN (]
S+RC
A
%L'lQF
1 %E I
R=—0Q
4 O
C=2F

V(s) = 1 _ s(s+2)
Z(s) (s+D(s+3)
Y(s) s+2

s (s+1)(s+3)

Y(s C <
©_ K K
N s+l 543

X, :(.5‘+l)} ] 1+ 1
s |y (-143) 2
Ky=(s+pnl® B+ 1
s oy (34D 2
1 1
Y(s a9 9
)_2 . 2
K s+1 s+3
I I
5.\‘ E.\‘
Y(s) = =—+—=—
(s) s+l s+3

The Foster II form is obtained by the partial-fraction expansion

of admittance function

These two terms represent the admittance of a series RC circuit. For a series RC circuit.

By direct comparison,

The network is shown in Fig.

%Cﬁ)=————T—
s+
RC.
1
R]—ZQ, (1:—1:
2
] ; 1
R,=2Q, C,=—F
6

noj—
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Cauer I Form

By continued fraction expansion,

Cauer Il Form

st 4543
Zs)= St As*3
ST+ 28
s? +2_y)_y3 +4s +3[1 —Z
§2+ 2y
5 |
2s+3 5"+ 2s 5.\' «—Y

> 3
ST+ —8
2

%.\‘)2.&'+3[4 — 7

2s
J3:¢
3l—s]—s«7Y
6
—
2
0
10Q 4Q
O
11 11
__EF = gF

The impedances are connected in the series branches whereas admittances
are connected in the parallel branches. The network is shown in Fig.

The Cauer I form is obtained by continued fraction expansion about the pole at infinity

O

The Cauer II form is obtained from continued fraction expansion about the pole at the

origin. Arranging the numerator and denominator polynomials of Z(s) in ascending order of s,
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By continued fraction expansion,

2s

25+SZ)3+43+_&‘2[1 7
3
3+—3
2

ES +5° )2.&‘ +5° [i «—Y
2 5

4 ,
2s+—s8"
5
5 )5 5[ 25
—5 )—s—l—w“(—(—Z
5 2s
5
g
2

L >
—g
S
0
2 2
ZF o F
o1 ||
!
The impedances are connected in the series branches whereas 5
=Q 5Q
4

admittances are connected in the parallel branches. The network is shown

in Fig.
O

2) Realise Foster forms of the following RC impedance function

Z(s) = 2(s+2)s+4)
(s+1)(s+3)

SOL:
Foster I Form The Foster | form is obtained by the partial-fraction expansion of the impedance function
Z(s). Since the degree of the numerator is equal to the degree of the denominator, division is carried out

first.
sT+125+16
s +4s+3

2 +4s+3]2.&‘2 +12_s‘+16[2

Z(s)= 2

25>+ 85+ 6
45+10
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4s5+10 4s+10

Z(s)=2+————=24+—"""—"—
s*+4s5+3 (s+1)(s+3)
By partial-fraction expansion,
K K>
Z(s) =2+ —— 4 —2
s+1 s+3
. 2(-1+2)(-1+4
where Ky=(s+1)Z(s)| _ = ( X )_3
s=-1 (—1+3)
. 2(-3+2)(-3+4
Ky=(s+3)Z(s)|_ .= (=3+2X )
= (=3+1)
Z(s)=2+ +
s+1 s+3

The first term represents the impedance of a resistor of 2 2. The remaining terms represent the impedance
of a parallel RC circuit for which

1
C;
Zre(s) = l
s+
R,.C;
By direct comparison,
1
Rl =3 Q, C 1| = = F
3
1
Rg = Q, C 2= 1 F
3

The network is shown in Fig.

Foster II Form The Foster II form is obtained by partial-fraction expansion of admittance function Y(‘S) .
(s+1)(s+3) ’
2(s+2)s+4)
Y(s)  (s+D)(s+3)
s 2s(s+2)(s+4)
By partial-fraction expansion,

Y(s) K K K
(5):_0+ L

Y(s)=

s s s+2 s+4
) . Y (DB 3
where Ky=s N S
S leeg (2)2)4) 16

K, :(.s-+2)@

S

_(=2+4D)(=2+3) (=D 1

o 2244 20-2)(2) 8
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Y (s)

_(A+D)(4+3) _ (DD 3

K> =(s+4) = =—
Sy 2((-4+2)  2(4)-2) 16

3 1 3

Y(s) _ &Jr 8 16

s s s+2 s+4

l 3

—S — S

Y(s)= 48 16

16 s+2 s+4

. . . . .16 .
The first term represents the admittance of a resistor of 3 Q. The other two terms represent the admittance
of a series RC circuit. For a series RC circuit.

)

Ype(s) =
s+
RC,
By direct comparison, ©
: 16 ¢
7 1 80 3 Q
R=8Q, C=— 16
16 ° 1 3
16 3 T - T o F
R,=—K, C,=—F
-3 64 ©

The network is shown in Fig.

3) Obtain the Cauer forms of the RC impedance function

Z(s)

SOL:

Cauer I Form

Z(5) = (s+2)s

_ (s+2)(s+6)
s+ 1)(s+3)

+6) 57 +8s+12

T 2s+1)(s+3) 252 +8546

The Cauer I form is obtained by continued fraction expansion about the pole at infinity.
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By continued fraction expansion,

shown in Fig.

Cauer II Form

By continued fraction expansion,

The impedances are connected in the series branches whereas the
admittances are connected in the parallel branches. The network is

|
2s? +8.s‘+6)32 +8.s'+12(5 —7

s +4s5+ 3

|
43+9) 25° +8.s‘+6(5s «—Y

9
257+ =5
2

z.\‘+6)4.&‘+9(§%2
2 7

48
4s + —
7
15)7 g
_)-_He(ﬂsmf
7 )2 30
7
L
2
15( 5
6)— — 7
7114
15
e
0
1q 80 30
2 7 14
o—"\N\ N\ AYAYAY:
11 L a9
__§F __%F
o)

The Cauer II form is obtained by continued fraction expansion about the pole at the origin.
Arranging the polynomials in ascending order of s,

12+8s+s5°
Z(s)= 2E8HS
6+8s+ 25"

6+8s+ 2s° )12+8x+s3[2

124165+ 457

—8s5—3s°
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Since negative term results, continued fraction expansion of ¥(s) is carried out

Y(s)= 0+8s+2s”

12+8s+s”
By continued fraction expansion,
5[ 1
l2+83+52)6+85+2s“ (E Y

1 5
6+4s+—s5"
2

dy+ %.@ )12 + 85+ 57 [5 — 7
AY

C
12+ =5
2
2 3 2
—s5+s57 |45+ 457 | o« Y
2
8
ds+—s5"
5 5,17 5[ 49
—s“]s +.s‘“(—<—Z
14 2 55
7
g
2
el
27
14 14
5
g
14
0
1 5
3 F 19 F
o I ]

The impedances are connected in the series branches, 7 14 6
whereas the admittances are connected in the parallel branches. g 20 § gl 57
The network is shown in Fig.

O
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SYNTHESIS OF ONE PORT ‘RL’ IMPEDANCE / ‘RC’ ADMITTANCE FUNCTIONS
RL driving point impedance / RC admittance functions have following properties:

1. The poles and zeros are simple and are located on the negative real axis of the s plane.
2. The poles and zeros are interlaced.

3. The lowest critical frequency is a zero which may be at s = 0.
4. The highest critical frequency is a pole which may be at infinity.

_ . . , , . Zpi(s
5. Residues evaluated at the poles of Z,,(s) are real and negative while that of Zr(5) are real and
positive. §

1 . "
6. The slope (—ZRL 1s positive.
do

7. Zp (0) < Zgy (o).

The admittance of an inductor is similar to the impedance of a capacitor. Hence, properties of an RL
admittance are identical to those of an RC impedance and vice-versa, i.e.,

ZR(“ (S) = YRF_ (\)
Zrr (*) = Ye (\)
An RL admittance can be considered as the dual of an RC impedance and vice-versa.

FOSTER-I1 FORM (OR) FIRST FOSTER FORM

The partial fraction expansion of Zy (s) is given as follows:

Kis Kis

Z(s)=Ko + + ot _|_..._+_Km.’5‘
s+0, s+0;
The general network for RL impedance function in First foster form is shown in the fig.
AWV AW
R1 R;
o—o00—+ === T
Ro L
OO0 HE
Z(S) RS Ll Li
o
Where
Ky
Rl = Kl L1 = e—
0,
R{) = K{) _____ LQ — Km
K, '
R, = K. L = =—
! o
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FOSTER-II FORM (OR) SECOND FOSTER FORM

K K-
] +...+ K.

Y(s) = 2o+

5

n 2

S+ O-] S+ 0-3

Thus, it can be realized as RL admittance and it is shown in the fig.

o o __
R1 Rj
Y(S)— Lo §Rm
Ll L1
G _e——— e - =4
Where
Le—m g2l =L g
[}_KO’ ]__K-lll Kl """ ’ OO_KOC,

CAUER-I FORM (OR) FIRST CAUER FORM

The continued fraction expansion of the impedance function is in the form

Hence the synthesized network of Z(s) in first Cauer form is shown in the fig.

o——000"
Ly
Z(s) Ra
o

L3

R4
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CAUER-II FORM (OR) SECOND CAUER FORM

For second Cauer form, arrange the numerator and denominator polynomials of Z(s)
in ascending order, then the continued fraction expansion is in the following form.

1
™ T
* Ret 71—
m+...

The realization of Z(s) in second Cauer form is shown in the fig.

o—\WWW AW
R, R3
Z(s) g Lo % Ls
G

PROBLEMS ON RL NETWORKS

1) Realise following RL impedance function in Foster-I and Foster-II form.

2s+1)(s+3)
g) =

(s+2)s+06)

SOL:

Foster I Form The Foster | form is obtained by partial-fraction expansion of the impedance function Z(s).
By partial-fraction expansion,

Vo KK
Z(-\)i.s'+2+.s'+6
2(2+1)(—2+3 1
where Ki=(s+2)Z(s)|_, = ( X ) .1
e (—2+6) 2
2(-6+1)(—6+3 15
Ky =(s+6)Z(s)| = (6+D(6+3) _ 15
§=—0 (_6+2) )

is carried out.

Since residues of Z (s) are negative, partial fraction expansion of
s

Z(s)  2(s+D(s+3)
s s(s+2)(s+6)

By partial fraction expansion,

Z(s) K, K K
Z6) _ Ko Ky

s s s+2 s+6

Page-44




25| _2m3)_ 1

where Ky=s
S o leg  (2)6) 2
Z(s 2(=2+1)(=2 1
Ki—(s42)20)  _A2en243) 1
O (2)(-2+6) 4
K;z(s+6)@ :2(—6+l)(—()+3):§
O (—6)(-6+2) 4
oS
Z) 2, .4 4
5 s s+2 s+6
1 5
—8 —48
Z(s)=—+3— 43
s+2 s+6

. . . 1 .
The first term represents the impedance of the resistor of ) Q . The other two terms represent the impedance
of the parallel RL circuit for which

R;s
Zp(s)=—
re(S) R
s+—
L
By direct comparison,
1
Rl = gl, Ll - — H
4 8
5
R’) = E gl, L7 =
T4 - 24

The network is shown in Fig.

Foster II Form  The Foster 11 form is obtained by partial fraction expansion of ¥ (s). Since the degree of the
numerator is equal to the degree of the denominator, division is first carried out.
Y(s) (s+2)(s+6) s> +8s+12
§) = =
2s+D(s+3)  25° +85+6

l
257 +8s5+ 6)5’1 +8s5+ 12(2

s*+4s+3
45+9
L1 C L C
Y(.\‘):L 2’4.\"’ 9 :L-I— 45+9
2 25" +8s+6 2 2s+D(s+3)
By partial-fraction expansion,
4549 Ko K
V(s)=——— =20,
20s+D(s+3) s+1 s+3
(—4+9) 5
‘her Ko =(s+1)); (s == "7 =T
where 0 =(s+HY(s) _, i) 3
7 v (712"’9 3
K =(s+3(s)_ = 12D _3
=37 2(=3+1) 4
>3
Y(s)m by 4 o 4
2 s+1 543
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The first term represents the admittance of a resistor of 2 Q. The other two terms represent the admittance
of a series RL circuit. For a series RL circuit,

R
L
Yrr(s)=—
() R
s+
L o
By direct comparison, 40 40
5 &
4 4 -
R=2Q L=_H 2a .
Rg = 4 !.2, Lz = 5 H o

The network is shown in Fig.

2) Obtain the Foster [ and Cauer I forms of the RL impedance function.
s(s+4)(s+8
Z(s) = s(s+4)(s+8)
(s+1)s+6)

SOL:

Z(s)

A

Foster I Form The Foster | form is obtained by partial fraction expansion of

Z(s) (s+4)s+8)

s (s+1)(s+6)

Since the degree of the numerator is equal to the degree of the denominator, division is first carried out.

sS4+ Ts+6)s” +125+32(1

sT+7s+6
55426
Z(s) Ss+26 S5s+26
=1+— =1+
S sT+Ts+06 (s+1)s+06)
By partial-fraction expansion,
Z(s K K
(s) _ 1y Ko A
s s+l s+6
. S5s+26 -5+26 21
where Ky = =—=—
s+6 [, -1+6 5
K ~ Ss+26 ~-30+26 4
ol |, 641 5
21 24
Z(s 5 5
() S PP B
S s+1 s+6
21 4
—s =S
Z(s) =5+t
s+1 5+6
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The first term represents the impedance ofthe inductor of 1 H. The other two terms represent the impedance
of a parallel RL circuit for which

R;s
Zpr(s)=—
R (5) R
§+—
L
By direct comparison,
21 21
R[ = gl, Ll - H
4 4
R') = E SZ, LE = — H

The network is shown in Fig.

Cauer 1 Form The Cauer | form is obtained by continued fraction expansion of Z(s) about the pole at
infinity.

s +12s% +32s

Zsy= S 124328

s +7Ts+6

By continued fraction expansion,

s +7s +6].§“3 +125° + 32.\'[.\' —Z

s° + 75 +6s

557 + 26.s-).s-3 +75+6 (i VY

¥,

, 26

ST+ —
b

3
_ 5 50
8§ +—8
7 9 9
— S5 |=s+6] — 1}
b 3
9
-5
5
28 (28
6)—.5‘ —s 7
3 |
28
—5
3
0
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The impedances are connected in the series branches, whereas the admittances are connected in the parallel
branches. The network is shown in Fig.

25 28
1H 9 H 18 1

o— 000 —T—000"

140
§5£2 g ?52

O

3) Find the circuit in second Cauer form of the following function

2
s“+4s5+3
Z“):_?_____'
T+ 8s+12

SOL:
Given network function is as follows:

2

sT+4s5+3
Z(S):z—

s+ 8s+12

0+0+3 3 ]
Z0)=————="—=—

0+0+12 12 4

Further, Z(e=) can be calculated as follows:

| 3
52®+i+7j a3 3

A S S 52
Z 5 = - =
= s 1 S 12
s 1+—+—| I+—+—
S 5 S 5
1+0+0
(c0) = =1

14040
Z(=0) > Z(0)
Therefore, the given impedance 1s of R—L type.
Now, Cauer form-II can be obtained as in the following:
3445+ 52
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— (1
l2+85+,5‘3]3+4,5‘+.5'2 [Z

o2
34254-

/1

3 6
2s +—}52 ] 12 +8s + 52 (—
4 S

9
[2+—5
2
3 4
457 ]25+—52 (—XZs =—
2 4 S 7
457
25+—
7
552 ) 7s [ 28 7s 98
28 )2 5¢27 2 5y
s
2
5 5
52]—5?‘ [—
28 28
5
—
28
X
1 4 5,
XQ 7!.2 EQ
o— MWW~ MWW~ MWW
R Ry Rs
The Cauer form-II circuit is shown in Figure Z_(s,i L, % %H ng%H
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